Which Chessboards have a Closed Knight's Tour within the Cube?
نویسنده
چکیده
A closed knight’s tour of a chessboard uses legal moves of the knight to visit every square exactly once and return to its starting position. When the chessboard is translated into graph theoretic terms the question is transformed into the existence of a Hamiltonian cycle. There are two common tours to consider on the cube. One is to tour the six exterior n × n boards that form the cube. The other is to tour within the n stacked copies of the n × n board that form the cube. This paper is concerned with the latter. In this paper necessary and sufficient conditions for the existence of a closed knight’s tour for the cube are proven.
منابع مشابه
Which Chessboards have a Closed Knight's Tour within the Rectangular Prism?
A closed knight’s tour of a chessboard uses legal moves of the knight to visit every square exactly once and return to its starting position. In 1991 Schwenk completely classified the m × n rectangular chessboards that admit a closed knight’s tour. In honor of the upcoming twentieth anniversary of the publication of Schwenk’s paper, this article extends his result by classifying the i × j × k r...
متن کاملThe Closed Knight Tour Problem in Higher Dimensions
The problem of existence of closed knight tours for rectangular chessboards was solved by Schwenk in 1991. Last year, in 2011, DeMaio and Mathew provide an extension of this result for 3-dimensional rectangular boards. In this article, we give the solution for n-dimensional rectangular boards, for n > 4.
متن کاملAn Efficient Algorithm for the Knight's Tour Problem
A knight’s tour is a series of moves made by a knight visiting every square of an n x n chessboard exactly once. The knight’s tour problem is the problem of constructing such a tour, given n. A knight’s tour is called closed if the last square visited is also reachable from the first square by a knight’s move, and open otherwise. Define the knight’s graph for an n x n chessboard to be the graph...
متن کاملGeneralised Knight's Tours
The problem of existence of closed knight’s tours in [n]d, where [n] = {0, 1, 2, . . . , n− 1}, was recently solved by Erde, Golénia, and Golénia. They raised the same question for a generalised, (a, b) knight, which is allowed to move along any two axes of [n]d by a and b unit lengths respectively. Given an even number a, we show that the [n]d grid admits an (a, 1) knight’s tour for sufficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 14 شماره
صفحات -
تاریخ انتشار 2007